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1.  INTRODUCTION

Connectivity of populations across time and space
is fundamental to the processes of evolution and pop-
ulation dynamics, and understanding patterns of
population connectivity is essential to natural re -
source conservation and management (Dunning et
al. 1992, Taylor et al. 1993, Cowen et al. 2006, Kool et
al. 2013, Selkoe et al. 2016, Morin et al. 2017). Con-

nectivity between populations (or lack thereof) is a
critical mechanism for gene flow, genetic differentia-
tion and even speciation (Coulon et al. 2004, Waples
& Gaggiotti 2006, Hedgecock et al. 2007). Connectiv-
ity within and among populations may also lead to
source-sink dynamics (Taylor et al. 1993, Armsworth
2002, Schumaker et al. 2014), which can arise from
interactions between life-history characteristics (e.g.
dispersal and density-dependent recruitment pro-
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cesses), landscape/seascape corridors and barriers
(e.g. land masses, rivers, and oceanographic currents)
and environmental characteristics (e.g. currents, tem-
perature, prevailing winds, salinity). Understanding
the effects of these processes on connectivity in spe-
cies or populations of concern is an important step for
making successful conservation and management
decisions (Bennett 1999, Crowder & Norse 2008,
Foley et al. 2010).

In the marine environment, the mechanisms for
connectivity in animal populations include larval dis-
persal (Cowen & Sponaugle 2009, Planes et al. 2009,
D’Aloia et al. 2015) and nektonic movements of ju -
veniles (Chin et al. 2013, Cardona & Hays 2018) and
adults (Rooker et al. 2008, Stelzenmüller et al. 2011,
Ciannelli et al. 2013, Frisk et al. 2014, Archambault
et al. 2016). Larval dispersal is governed by several
life-history characteristics, food-web interactions and
oceanographic considerations. Life-history charac-
teristics of particular importance include the timing
and depth of larval release, pelagic larval duration,
and larval mortality (Treml et al. 2015), which vary by
and within species, particularly in species that range
across a wide latitudinal gradient. Interacting with
each of these life-history characteristics is the influ-
ence of oceanographic currents, fronts, eddies and
upwelling conditions, which can be highly variable
across temporal scales and in 3-dimensional space
(Bjorkstedt et al. 2002, Largier 2003, Watson et al.
2010, Woodson et al. 2012, Yu & Kim 2018). The mor-
phological development, behavior (e.g. diel vertical
movement, rheotaxis) and swimming ability of plank-
tonic larvae and juveniles subsequently modify the
influence of oceanographic conditions (Morgan et al.
2009, Ospina-Alvarez et al. 2018, Blanco et al. 2019).

Following the pelagic dispersal period, the avail-
ability and patchiness of suitable settlement and
recruitment habitat adds to the complexity of vari-
ables and mechanisms responsible for the spatial
structure of species and populations (Holbrook et al.
2000). Density-dependent processes, such as post-
settlement mortality (e.g. Connell & Jones 1991) and
competition with congeners (Schmitt & Holbrook
1999, Poulos & McCormick 2015), further modify
these patterns of settlement. Finally, the mobility of
adults (Huijbers et al. 2013) and reproductive habits
of species (e.g. spawning aggregations, broadcast
spawning versus nest brooding) provide yet another
layer of complexity that results in the ultimate level
of connectivity among populations that we observe in
the marine environment (Jones et al. 2005, 2007).

Understanding realized levels of population con-
nectivity (Burgess et al. 2012) is a key step toward

achieving conservation and management goals as
required under protected species mandates such as
the US Endangered Species Act (ESA). One such
goal is the recovery of 2 populations of rockfish
(Sebastes spp) listed under the ESA in the Puget
Sound/Georgia Basin (PSGB) region of Washington
State, USA, and British Columbia, Canada. In 2010, 3
species of rockfish in the PSGB (Fig. 1) were listed
under the ESA: canary rockfish S. pinniger and yel-
loweye rockfish S. ruberrimus were declared threat-
ened, and bocaccio S. paucispinis was declared en -
dangered (NMFS 2010). Strong evidence existed that
rockfish abundances in Puget Sound were de clining
significantly (Drake et al. 2010, Williams et al. 2010,
Tolimieri et al. 2017). Additionally, regional experts
concluded that the PSGB populations of the 3 species
were distinct from larger populations located along
the outer North American West Coast (Drake et al.
2010). These distinct population segment (DPS) des-
ignations were based in part on indirect evidence,
namely genetic differences that had been found
between PSGB and West Coast populations of 3
other Sebastes species (Seeb 1998, Buonaccorsi et al.
2002, 2005). Subsequent direct analyses found genetic
differentiation between yelloweye rockfish captured
in PSGB versus those captured on the outer coast —
consistent with the DPS status (Siegle et al. 2013,
Andrews et al. 2018). However, canary rockfish cap-
tured in PSGB waters were genetically indistinct
from canary rockfish captured on the outer coast
(Andrews et al. 2018). (No conclusions were reached
about bocaccio, due to low sample size.)

As a result of the genetic analyses, canary rockfish
in the PSGB region were no longer considered a DPS
and were delisted under the ESA, while PSGB yel-
loweye rockfish remain listed as threatened and
PSGB bocaccio remain listed as endangered (NMFS
2017a). Conservation of these species has broad
implications for fisheries management. All 3 rockfish
are targeted by commercial fisheries along the west
coasts of the USA (PFMC 2016) and Canada (DFO
2021). Additionally, yelloweye rockfish, canary rock-
fish and bocaccio occur in deep, rocky habitats in
Puget Sound and also co-occur with popular recre-
ational fishing target species such as lingcod
Ophiodon elongatus; as a result, recreational hook-
and-line fishing in Puget Sound for bottomfish has
been heavily constrained to reduce the risk of
bycatch of ESA-listed rockfish (WDFW 2010). Under-
standing the mechanisms that promote genetic dif-
ferentiation among PSGB and outer coast yelloweye
rockfish populations, but genetic panmixia in canary
rockfish, will be important for implementing suc-
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cessful recovery plans and sustainable management
strategies for rockfish in the PSGB region.

In this article, we explore patterns of larval
dispersal of yelloweye and canary rockfish in the
PSGB and adjacent regions and test whether re -
levant life-history characteristics can explain the
observed differences in their population structures.
Specifically, we use a realistic ocean circulation
model to simulate larval dispersal from known
adult yelloweye and canary rockfish habitats in
the PSGB region and the adjacent outer coast. We
then quantify the level of connectivity among re -
lease and settlement locations across a range of
pelagic larval durations for each species. Finally,
we use these patterns to hypothesize whether
larval dispersal mechanisms are able to explain
the observed differences in population structure
between these 2 ESA-listed rockfish in the PSGB
region.

2.  MATERIALS AND METHODS

2.1.  Rockfish life history characteristics

Unlike many marine fish species, rockfish are
live bearers and extrude 3 to 7 mm larvae (Kendall &
Lenarz 1987, Moser 1996). Larvae generally are
pelagic for ~1−2 mo and reach a standard length of
~20−30 mm before transforming to a pelagic juvenile
stage that lasts weeks to months; they then settle to
bottom habitat (Love et al. 2002, Matarese et al.
2003). Many features of the pelagic phase can influ-
ence dispersal and are thus relevant to intraspecific
population connectivity. These include the following:
timing and depth of larval release (Petersen et al.
2010); pelagic larval duration (PLD; Sponaugle et
al. 2002, Galarza et al. 2009); larval behavior (Leis
2007, Weersing & Toonen 2009); and swimming abil-
ity (Sakuma et al. 1999). Because rockfish larvae are
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Fig. 1. Larval release sites for each simulation run with canary and/or yelloweye rockfish. Thick black line: Puget Sound/Georgia
Basin distinct population segment (DPS) boundary for protected rockfish; gray lines: boundaries for each settlement basin
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very difficult to identify to species in the field, much
of the data on larval characteristics are at the generic
‘rockfish’ level. Below, we compare available infor-
mation on these traits for yelloweye and canary rock-
fish, typically from studies outside of PSGB.

Little is known about the specific timing or depth of
larval release or the PLD for yelloweye or canary
rockfish in PSGB waters. However, off the coast of
Oregon, larval release (i.e. parturition) for canary
rockfish appears to peak from January to February,
while parturition for yelloweye rockfish off the
coast of British Columbia appears to peak later, from
May to June (Love et al. 2002), with some evidence of
dual parturition periods in both early spring and
mid-late summer in Puget Sound (Washington et al.
1978). Larval and juvenile canary rockfish spend
~3−4 mo in the water column along the outer coast,
while there is little information on PLD of yelloweye
rockfish from any geographic location (Love et al.
2002).

Similarly, information on larval and pelagic juve-
nile rockfish behavior tends to be generic rather than
species-specific. Sebastes larvae tend to be found in
the top 100 m of the water column, with evidence
suggesting highest densities at depths >20 m (Ahl -
strom 1959, Sakuma et al. 1999, Bowlin 2016). Many
fish larvae exhibit diel vertical migration, but there
has been relatively little support for this behavior for
Sebastes, particularly along the US West Coast (Bar-
nett et al. 1984, Moser & Boehlert 1991, Sakuma et al.
1999). Some studies have reported more Sebastes
larvae caught during the night than day, but this was
attributed to daytime net avoidance (Sakuma et al.
2007). There is also evidence that younger larval
stages (pre-flexion and flexion) of Sebastes are found
in shallower, more inshore and in lower saline waters
than older larval stages (post-flexion; Sakuma et al.
1999, Landaeta & Castro 2006, Bowlin 2016) and that
larvae are found deeper in the summer compared to
spring (Lenarz et al. 1991). In Puget Sound, limited
studies have described the distribution of rockfish
larvae in surface waters to vary across seasons, with
peaks in early spring and late summer (Greene &
Godersky 2012). Together, these characteristics sup-
port the assumption that young rockfish larval stages
in Puget Sound are likely to occupy shallow, lower-
saline waters followed by an ontogenetic shift to
deeper water layers.

Though we do not consider it in our analyses, adult
movement can also influence Sebastes population
connectivity (Palumbi 2004, Grüss et al. 2011), and
adult movement differs starkly between these 2 spe-
cies. Adult canary rockfish have been characterized

as transient, with wide-ranging spatial movements
(Hannah & Rankin 2011) that may cover hundreds of
kilometers over the span of multiple years (Lea et al.
1999, Love et al. 2002). In contrast, adult yelloweye
rockfish exhibit low rates of migration (Black et al.
2008) and high site fidelity (Coombs 1978) with little
month-to-month variability in horizontal and vertical
movements (Hannah & Rankin 2011). These respec-
tive characteristics may promote population connec-
tivity in canary rockfish and population differentia-
tion in yelloweye rockfish (Andrews et al. 2018).

2.2.  Oceanography of Puget 
Sound/Georgia Basin

The PSGB region is a complex network of inland
straits, basins, and estuaries (Fig. 1), including Puget
Sound, the Strait of Georgia (SOG) and the eastern
Strait of Juan de Fuca (JDF). Circulation in the sys-
tem is driven by stratified estuarine circulation of the
surface layers combined with fortnightly cycles of
tidal currents driving the deeper layers. The system
experiences annual net outflow of surface waters due
to freshwater discharge from 16 major rivers, the
most significant of which are the Fraser River in
British Columbia and the Skagit River in Puget
Sound (Fig. 1; Masson 2002, Babson et al. 2006,
Khangaonkar et al. 2011, Banas et al. 2015, Mac-
Cready et al. 2021). Freshwater flow rates vary annu-
ally and dictate the magnitude of net outward flow
(Riche & Pawlowicz 2014, Pawlowicz et al. 2019).
Freshwater discharge also varies by season and
basin; for example, the Fraser River has one large
peak in spring and early summer, while the Skagit
River generally experiences multiple peaks of differ-
ent magnitudes over the course of the year (Fig. 2).
Tidal currents introduce denser oceanic waters into
the deeper layers of PSGB through the Strait of JDF
via neap and spring tide cycles (Alford & MacCready
2014). Salinity and stratification vary seasonally due
to changes in river discharges and are spatially
based on proximity to straits and to major rivers (Bab-
son et al. 2006, Moore et al. 2008, Khangaonkar et al.
2011). Circulation dynamics within PSGB are con-
strained by shallow sills at the eastern boundary of
the Strait of JDF (Victoria Sill), Boundary Pass (at the
northern edge of the San Juan Islands), and at the
entrances to Puget Sound proper, Hood Canal, and
South Sound, contributing to higher water residence
time in some basins (Masson 2002, Sutherland et al.
2011, Deppe et al. 2018, MacCready et al. 2021).
These horizontal circulation and vertical mixing
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patterns set the stage for complex
oceanographic dy namics capable of
affecting the dispersal of planktonic
organisms (Engie & Klinger 2007),
particularly for species that may have
ontogenetic shifts in their pelagic
depth distribution.

Of particular relevance to this study
are any differences in circulation pat-
terns in 2006 compared to other years
(the focal year for the oceanographic
circulation model; see Section 2.3) that
might suggest our results are not in -
dicative of ‘average’ oceanographic
conditions. The primary driver of the
stratified estuarine circulation of the
PSGB region is freshwater input, while
the deep-layer tidal currents will be
relatively consistent across years. Daily
flow rates from 1980 to 2020 from the
Skagit and Fraser rivers suggest that
2006 was a relatively average year
during the first ~180−200 d of the year,
which encompasses the entire disper-
sal period for canary rockfish and the
first 60−80 d for yelloweye rockfish,
after which below-average flow con-
ditions occurred (Fig. 2).

2.3.  Larval dispersal modeling

The dispersal patterns for larval rockfish were sim-
ulated using particle tracking in velocity fields from a
numerical model. The spatial and temporal fields of
circulation used in the particle tracking were derived
from MoSSea (modeling the Salish Sea), a high-reso-
lution realistic numerical simulation of the Salish Sea
(includes PSGB) and adjacent coastal waters (Fig. 1).
MoSSea has been extensively validated by compari-
son with data from tide gauges, CTD casts, and a
variety of moorings (Sutherland et al. 2011). The
model was run for the year 2006, with the initial
fields in Puget Sound derived from CTD cast obser-
vations. This year was chosen because of optimal
overlap with observations on the shelf.

The numerical framework of MoSSea is the
regional ocean modeling system (ROMS), a commu-
nity model used in a wide variety of coastal and estu-
arine applications (Haidvogel et al. 2000, Shchepetkin
& McWilliams 2005). ROMS solves the hydrostatic,
incompressible, Reynolds-averaged momentum and
tracer conservation equations with a terrain-follow-

ing vertical coordinate and a free surface. For this
application, the model bathymetry was configured to
produce realistic hindcast simulations of the Salish
Sea and adjoining coastal waters. The horizontal
domain is a spherical, stretched Cartesian grid ex -
tending from longitude 127° to 122° W, and latitude
45° to 50° N. The grid resolution is as fine as 280 m in
Puget Sound and stretches to 3.1 km at the bound-
aries. The model uses a vertical grid in which there
are always 20 active layers between the sea floor and
the tidally varying free surface (Sutherland et al.
2011). The layer spacing is somewhat tighter near
the free surface and bottom to allow better resolution
of the surface and bottom boundary layers. The
model was forced with realistic flow from 16 rivers,
tides, atmospheric forcing by wind stress and heat
flux, and open ocean boundary conditions. Complete
details of MoSSea setup, forcing, boundary condi-
tions and validation are in Sutherland et al. (2011).
Results were recorded in hourly time steps, including
3-D fields of temperature, salinity, horizontal and
vertical components of velocity, and turbulent eddy
diffusivity (example data from a single time-step
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Fig. 2. Daily freshwater streamflow volume from (a) Fraser River in the Strait
of Georgia Basin and (b) Skagit River in the Main Basin of Puget Sound from
1980 to 2020. Dispersal modeling occurred across Days 0−180 for canary rock-
fish (orange arrow) and across Days 120−300 for yelloweye rockfish (yellow 

arrow)
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are in Fig. S1 in Supplement 1 at www. int-res. com/
articles/ suppl/m677 p095 _ supp1. pdf).

For the particle tracking experiments, we used the
full 3-D velocity fields, as well as the vertical turbu-
lent eddy diffusivity. A total of 33 experiments were
performed: 15 for canary rockfish and 18 for yellow-
eye rockfish. An experiment consisted of releasing a
total of 100 000 particles (= rockfish larvae) from the
seafloor bottom depth at a given release site. Release
sites (Fig. 1) were selected based on locations where
adults of each species had been collected in previous
research (Andrews et al. 2018). Particles were re -
leased sequentially over a period of 59 d (2 lunar
cycles) and allowed to disperse for up to 120 d. The
timing and distribution of releases were based on the
duration of peak parturition periods for coastal popu-
lations of these species (Love et al. 2002) and the dis-
tribution of parturition across the lunar cycle of a
congener rockfish species (Fig. S2 in Supplement 1;
Pastén et al. 2003). Larvae were released beginning
with the first new moon in January for canary rock-
fish and in May for yelloweye rockfish.

Particles were advected in space using established
methods of 4th-order Runge-Kutta integration from
the 3-D velocity field (Banas et al. 2009, Giddings et
al. 2014, Banas et al. 2015). Dispersive effects of tur-
bulence were included using a random walk based on
the local modeled eddy diffusivity and its vertical gra-
dient (Visser 1997, Banas et al. 2009). An advective
time step of 1 h was chosen to match
the temporal resolution of the MoSSea
model fields. This works well in most of
the domain, but in extreme spots such
as Tacoma Narrows (near release site
Site 16 in Fig. 1), where there are strong
currents and narrow channels, it led to
artificial loss of some particles to land.
Particles were allowed to resolve their
trajectories over time, but particles that
were lost to land by the dispersal day of
interest (i.e. 20, 40, 90 or 120 d) were
re moved from the an alysis. Due to lim-
itations in post- processing, we sub-
sampled the 100 000 particle pathways
created by selecting every tenth parti-
cle from each release day, for a total of
10 000 particle pathways to use in sub-
sequent analyses.

Recent research along the US West
Coast suggests that rockfish larvae are
more likely to inhabit the upper 20−
50 m for the first 40 d (pre-flexion and
flexion larval stages), then move deeper

(range 50−100 m; post-flexion larval stage) for the re-
mainder of the pelagic stage (Bowlin 2016). To reflect
this be havior, particles were given these age-dependent
depth be haviors (Fig. S3 in Supplement 1), and any
particles that exceeded these limits for a given time
step were moved back to the appropriate depth range.

We tracked particle locations relative to 2 man-
agement-based spatial scales. First, we divided the
model domain into waters that were ‘inside’ or ‘out-
side’ the PSGB DPS boundaries (Fig. 1, Table 1). Sec-
ond, we divided the model domain into polygons
based on the major oceanographic basins of the
PSGB region, which coincide with the spatial man-
agement units in the Puget Sound Rockfish Recovery
Plan (NMFS 2017b). The coordinates, depth, man-
agement unit basin and inside/outside DPS catego-
rization were recorded for the location of each particle
on Days 1−120 post-release. Particles that dispersed
out of the model’s domain on the outer coast were
included in the ‘Outside DPS’ and ‘Outer Coast’ DPS
and management basin categories, respectively.

2.4.  Analyses

We focused our analyses on the spatial distribution
of larvae across 2 spatial management scales and the
effect of PLD on those dispersal patterns for both spe-
cies. We calculated the proportion of particles re -

100

Site no.    Release site                  DPS region      Basin                         Release
in Fig. 1                                                                                                      species

1               Quinault Canyon         Outside DPS   Outer Coast                Both
2               JDF Canyon                 Outside DPS   Outer Coast                Both
3               Ucluelet offshore         Outside DPS   Outer Coast                Both
4               Neah Bay                      Outside DPS   Strait of JDF               Both
5               Sekiu                             Outside DPS   Strait of JDF               Both
6               Crescent Bay                Outside DPS   Strait of JDF               Both
7               SW San Juan Island    Inside DPS      San Juan Islands        Both
8               Black Rock                   Inside DPS      San Juan Islands   Yelloweye
9               Point Disney                 Inside DPS      San Juan Islands        Both
10             Salt Spring Island        Inside DPS      Strait of Georgia        Both
11             Nanaimo                       Inside DPS      Strait of Georgia        Both
12             Bowen Island               Inside DPS      Strait of Georgia        Both
13             Point No Point              Inside DPS      Main Basin                 Both
14             Mukilteo                       Inside DPS      Main Basin                 Both
15             Blake Island                 Inside DPS      Main Basin                 Both
16             Vashon Island              Inside DPS      Main Basin               Canary
17             Dabob Bay                    Inside DPS      Hood Canal                Both
18             Chinom Point               Inside DPS      Hood Canal           Yelloweye
19             Dewatto Bay                Inside DPS      Hood Canal           Yelloweye

Table 1. Geographical and management organization of larval release sites
and basins. DPS: Puget Sound/Georgia Basin distinct population segment; 

JDF:  Strait of Juan de Fuca
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leased from each site across all release days that
were found (1) in each geographic DPS designation
(i.e. ‘inside’ or ‘outside’) and (2) in each management
unit basin for 20, 40, 90 and 120 d PLDs. We chose
these PLDs to examine 2 periods of dispersal that
focused on dispersal patterns of young larval stages
that occupied shallow depths (20−50 m) during the
first 40 d and dispersal patterns that integrated the
change in larval depth distributions (depths from
50− 100 m) and bracketed the ~3−4-mo PLD for
canary rockfish on the outer coast of US waters (Love
et al. 2002). We used these results to compare spatio−
temporal patterns of dispersal for each species and to
compare the dispersal patterns between the 2 spe-
cies. All proportions were used in a connectivity
matrix framework to evaluate differences in species-
specific dispersal patterns and the connectivity be -
tween release sites and destination locations (Mitarai
et al. 2009). We used R version 4.0.1 (R Core Team
2020) for all calculations and matrix mapping.

3.  RESULTS

3.1.  Larval dispersal tracks

Dispersal tracks varied by individual particle, by
species, and by release site. Fig. 3 shows examples of
dispersal tracks and destination locations from 4 sim-
ulations after a 120 d PLD (n = 100 randomly chosen
from 100 000 tracks). Panels (a) and (b) in Fig. 3 illus-
trate divergences in dispersal patterns for the 2 spe-
cies for larvae released from Salt Spring Island in the
SOG basin. In general, yelloweye rockfish larvae
released from this site were heavily concentrated in
the same basin as they were released (Fig. 3a), while
canary rockfish larvae dispersed across several basins
within the DPS plus some dispersal outside the DPS
(Fig. 3b). Fig. 3c provides an example of cross-
boundary dispersal that was observed for canary
rockfish larvae released at SW San Juan Island,
while Fig. 3d provides an example where 100% of
simulated yelloweye rockfish larvae re leased in
Hood Canal remained within the release basin. The
variation in depths inhabited over the 120 d simula-
tion of canary rockfish larvae released from Salt
Spring Island (Fig. 3b) is shown in Fig. S3.

3.2.  Spatial and temporal patterns of dispersal

At the broadest spatial scale, we found high propor-
tions of both species’ larvae in the same DPS region

(‘inside’ or ‘outside’) as they were released, inde -
pendent of PLD (e.g. red shading generally corre-
sponds with the dotted diagonal lines in Fig. 4). This
was most consistent for larvae released from sites
within the Hood Canal, Main Basin and SOG basins,
in which >71% of canary rockfish larvae and >90% of
yelloweye rockfish larvae were found inside the DPS
across all PLDs, with the lowest proportions for both
species being released from the southernmost SOG
site (Site 10) (see Table S1 in Supplement 2 for matrix
values; www. int-res. com/ articles/ suppl/ m677 p095 _
supp2. xlsx). Larvae of both species released from
Outer Coast sites (Sites 1−3) were 100% retained out-
side the DPS at Day 20 and 40, but progressively dis-
persed into the DPS by Day 90 and 120 (up to 7% for
canary and 16% for yelloweye rockfish). This pattern
was even more pronounced for yelloweye rockfish lar-
vae released from sites in the Strait of JDF (Sites 4−6).

Dispersal across the DPS boundary was greatest
for larvae released from sites nearest the DPS bound-
ary. This was particularly evident for both species
released from Site 7 at Days 20 and 40 (Fig. 4). The
largest changes in cross-DPS boundary dispersal oc -
curred between Days 40 and 90 (Fig. 5). Larvae from
Outer Coast and Strait of JDF sites progressively
increased in proportions found inside the DPS from
approximately Day 40 to the end of the simulation.
Larvae released from inside the DPS, particularly from
the San Juan Islands (SJI) sites for both species,
showed high levels of dispersal outside the DPS
through Day 40 but then reversed that trend and
increased in proportions retained inside the DPS
through the end of the simulation (Fig. 5). These
changes and reversals in dispersal patterns coincide
with the ontogenetic change in depth distribution im -
posed on larval behavior at Day 40 in the simulation.

At the scale of oceanographic/management basins,
we found similar patterns of within- and cross-
boundary dispersal as found at the DPS scale — larvae
were generally found in higher proportions within the
same management basin as they were released, inde-
pendent of PLD (Fig. 6). This was again most consis-
tently observed for larvae released from the Hood
Canal and Puget Sound’s Main Basin for both species
(most pronounced for yelloweye rockfish), and these
proportions remained at similar levels across each of
the PLDs. However, at this scale, a relatively large
proportion of dispersal was observed for larvae re-
leased from the SOG sites (Sites 10−12) into the SJI
basin, particularly for canary rockfish, and this disper-
sal was highest by Day 20 and was re tained at slightly
lower levels at Days 90 and 120. Of particular note
was that both species’ larvae released from Strait of
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JDF sites (Sites 4−6) dispersed quickly (<20 d) to the
Outer Coast, and the only other significant propor-
tions of larvae found in the Strait of JDF over the
entire modeling period were 20 d old larvae from both
species that were released from sites in the SJI (see
Table S2 in Supplement 2 for matrix values).

The most variable dispersal at the scale of manage-
ment basins was observed for larvae released from
sites in the SJI (Sites 7−9; Fig. 6). Canary rockfish lar-
vae released from the northern site (Site 9) were
retained within the SJI at levels of ~40−50% across
each PLD and the remaining larvae dispersed to the

102

Fig. 3. Larvae dispersal patterns across the model’s domain from 4 simulations showing 100 out of 100 000 possible tracks.
Release site (large red circles), dispersal pathways (colored lines) and ending locations (small blue circles) after a 120 d pelagic
larval duration are shown for (a) yelloweye rockfish and (b) canary rockfish released from Salt Spring Island in the Strait
of Georgia Basin, (c) canary rockfish released from SW San Juan Island in the San Juan Islands basin and for (d) yelloweye 

rockfish released from Dabob Bay in the Hood Canal basin
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SOG and the Outer Coast, with a small
fraction dispersing into the Main Basin
and Hood Canal by Day 90 and 120.
However, canary rockfish released
from the western site (Site 7) dispersed
rather quickly to the Strait of JDF and
Outer Coast basins by Day 20 and 40
with ~30% retained in the SJI. By Days
90 and 120, these larvae were nearly
equally distributed between the SJI
and the Outer Coast (~30% each) with
the remaining larvae dispersing in
equal proportions (~10%) to the SOG,
Main Basin and Hood Canal basins.
Dispersal from the SJI was also site-
specific for yelloweye rockfish. Yellow-
eye larvae released from the northern-
most SJI site (Site 9) were found in high
proportions in the SOG basin (~50%
for each PLD); 30% were retained in
the SJI, and the majority of the re -
maining larvae dispersed to the Outer
Coast. Yelloweye larvae re leased from
the eastern SJI site (Site 8) were pri-
marily retained in the SJI (~45−65%
across PLDs) with ~20% dispersing to
the Main Basin and ~10% to each of
the SOG and the Outer Coast by Days
90 and 120. Finally, yelloweye larvae
released from the western SJI site
(Site 7) initially dispersed in high pro-
portions to the Outer Coast basin (~50%
by Day 40) with relatively equal reten-
tion/dispersal of the remaining larvae
in the SJI and the SOG, but by Days
90 and 120 dispersal was approxi-
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Fig. 4. Proportion of simulated canary and
yelloweye rockfish larvae found inside or
outside the boundaries of the Puget Sound/
Georgia Basin distinct population segment
(DPS) when released from each site after
a pelagic larval duration (PLD) of 20, 40,
90 and 120 d. Release sites are listed
in order of site numbers in Fig. 1 and
grouped with horizontal lines into their
respective management basin. OC: Outer
Coast; JDF: Strait of Juan de Fuca; SJI:
San Juan Islands; SOG: Strait of Georgia;
MB: Main Basin of Puget Sound; HC: Hood
Canal. Diagonal dotted lines: regions of
self-connectivity (i.e. the re lease site and
destination location are within the same
DPS region). Gray rows: release sites not 

simulated for one species
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mately equally divided across the SJI, SOG and
Outer Coast basins (~30% each).

3.3.  Differences in dispersal between species

At the scale of DPS regions, differences in the pro-
portion of each species found inside the DPS were
generally small (<0.10) across most release sites (left-
most column of Fig. 7). For example, there were no
differences observed between species for releases
from the Hood Canal or Main Basin across any of the
4 PLDs. The only substantial differences at this scale

were that canary rockfish had higher proportions of
larvae found inside the DPS boundaries than yellow-
eye rockfish at 20 and 40 d PLDs when released from
the Strait of JDF (particularly Site 6), but that pattern
disappeared by Day 90, and we found yelloweye
rockfish in higher proportions inside the DPS when
released from the Strait of JDF (particularly Site 4).

The largest differences between the 2 species were
observed at the scale of management basins (right-
hand columns of Fig. 7) with the most notable differ-
ence being that yelloweye rockfish larvae were ini-
tially found in much higher proportions in the Outer
Coast basin when released from the Strait of JDF
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Fig. 5. Proportion of simulated larvae found inside the geographical boundaries of the Puget Sound/Georgia Basin distinct
population segment (DPS) for each day of pelagic dispersal. Numbers are the release site numbers as in Fig. 1. Dashed vertical 

lines: pelagic larval duration (PLDs) presented in Fig. 4. JDF: Juan de Fuca
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Fig. 6. Proportion of simulated canary and yelloweye rockfish larvae found within each management basin when released
from each site after a pelagic larval duration (PLD) of 20, 40, 90 and 120 d. Release sites are listed in order of site numbers in
Fig. 1 and grouped with horizontal lines into their respective management basin. Basin abbreviations as in Fig. 4. Diagonal
dotted lines: regions of self-connectivity (i.e. the release site and destination location are within the same management basin). 

Gray rows: release sites not simulated for a species
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sites (PLD = 20), but that pattern faded as PLD
increased to 90 and 120 d. In addition, yelloweye
rockfish were retained within the SOG basin at much

higher proportions (>0.40) than ca nary rockfish at
each PLD, which in stead dispersed at higher rates
into the SJI basin.

4.  DISCUSSION

For 2 highly valued rockfish species
in the Puget Sound/Georgia Basin re-
gion, we found 3 generalizable pat-
terns of larval dispersal: (1) levels of
larval retention and cross-boundary
dispersal at both spatial scales were
highly dependent on the location of the
release site, (2) pelagic larval duration
interacted with larval depth distribu-
tion to determine the likelihood of lar-
vae dispersing into or being re tained
within the DPS, and (3) there were few
differences in the overall patterns of
dispersal between the 2 species despite
the seasonal differences in release pe-
riods. The overall levels of cross-DPS
boundary dispersal by Day 90 suggest
both species should have similar levels
of connectivity across the DPS bound-
ary, and we would not expect strong
population structure, provided that our
as sumptions about species-specific PLD,
larval depth, and behavior are rea-
sonable and our circulation model is
generally representative of long-term
physical conditions. This out come is in
contrast to genetic results for yelloweye
rockfish showing distinct dif ferences
across the DPS boundary (Andrews et
al. 2018).

4.1.  Site-specific patterns of larval
retention and dispersal

The retention and cross-boundary
dispersal of larvae for both species de -
pended heavily on the geographic
location of the release site. Larvae
released from sites far inside the DPS
were retained inside the DPS and in -
side their respective management
basins at the highest rates across all
sites and across all PLDs. In contrast,
larvae released from sites nearest the
DPS boundary had the lowest levels of
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Fig. 7. Difference between species’ proportion of larvae found inside the
boundaries of the destination region after a pelagic larval duration (PLD) of 20,
40, 90 and 120 d. Positive (yellow) values: release sites which had yelloweye
rockfish found inside the destination region at higher proportions. Negative
(orange) values: release sites which had canary rockfish found inside the des-
tination region at higher proportions. Release sites are numbered as in Fig. 1
and respective basin abbreviations as in Fig. 4. Gray rows had only one spe-
cies released. ‘Outside DPS’ (distinct population segment) is not shown on the
left-hand side because the values are simply the negative value of ‘Inside DPS’
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retention and the highest levels of dispersal across
DPS and management basin boundaries.

These rates of dispersal correspond to interactions
between PLD, larval depth distribution, and the
influence of ocean circulation patterns at each re -
lease site. This is evident in 2 illustrative ways. First,
larvae released from the Strait of JDF and the SJI
quickly dispersed through the Strait of JDF and out
to the Outer Coast when they were distributed at
shallower depths in the first 40 d. This is consistent
with net outward flow of surface waters and recent
studies of surface drifters from the PSGB region
(Pawlowicz et al. 2019). When these larvae re-distrib-
uted to deeper depths after Day 40, we observed a
‘U-turn’ behavior in which the proportion of these
larvae found inside the DPS progressively increased
with PLD. This is consistent with the deep-layer tidal
current circulation of the region (Alford & Mac-
Cready 2014) and hypotheses of onshore transport of
planktonic organisms being driven by internal waves
that vary with the tidal cycle (Shanks et al. 2014,
Shanks & Morgan 2018). The ontogenetic change in
larval depth distribution is consistent with limited
studies in the PSGB region that have shown densities
of rockfish larvae in the upper 2−3 m of surface
waters peak in early spring and late summer (Greene
& Godersky 2012), coinciding with larval release
periods across multiple rockfish species.

Second, larvae released in the SJI basin showed
highly variable within-basin patterns and dispersed
across DPS boundaries and across more destination
basins than larvae released from any other basin.
The SJI basin is an area of local upwelling due to 2
sills and deeper channels to the north (Boundary Pass
and SOG) and west (Victoria Sill and Strait of JDF),
along with high currents, year-round vertical mixing,
and constrictions of water movement amongst the
islands. These factors contribute to relatively short
water residence times that average ~5 d over the
entire year (Babson et al. 2006, Pawlowicz et al.
2019). In contrast, water residence time in the basins
where we saw high levels of larval retention are ~40
and ~80 d in the summer and winter in the SOG,
respectively; ~30−45 d in surface layers and ~90 d in
deeper layers for most of the year in the Main Basin
of Puget Sound; and ~60−120 d in Hood Canal (Bab-
son et al. 2006, Sutherland et al. 2011, Pawlowicz et
al. 2019). These conditions create a mosaic of highly
dynamic and dispersive locations interspersed with
highly predictable and retentive areas; such hetero-
genenous conditions have been found to promote
site-specific larval dispersal patterns in other systems
(Karnauskas et al. 2011, Nickols et al. 2012).

4.2.  Effects of pelagic larval duration

The effects of PLD on the dispersal patterns of each
species can be viewed in 2 primary ways. First, we
observed an overall pattern of increased dispersal
into the DPS and an increase in the retention of lar-
vae inside the DPS as PLD increased for both species.
These changes were most prominent for canary rock-
fish as the result of larvae from the Strait of JDF (par-
ticularly Site 6) dispersing into 4 of the 5 DPS basins
by Days 90 and 120, and larvae from the Outer Coast
dispersing into the SJI by Day 120. For yelloweye
rockfish, this pattern was mostly due to larvae from
the Strait of JDF dispersing into the SJI by Day 90
and even more so by Day 120. Thus, increases in PLD
appear to increase the probability of larval spillover
from outside the DPS to inside the DPS.

This interpretation, however, must take into ac -
count the change in larval depth distribution that we
imposed on larvae in the simulation at Day 40. The
largest differences in proportions of larvae found
inside the DPS or among management basins were
observed between the 40 and 90 d PLD results. After
Day 40, we observed a dramatic reversal in the pro-
portion of larvae found inside the DPS when released
from sites in the SJI and SOG and a progressive
increase in larvae dispersing into the DPS from
release sites outside the DPS. To separate the effects
of PLD and the depth distribution shift, we can com-
pare between the 20 and 40 d PLDs and between the
90 and 120 d PLD results. The 20 to 40 d comparison
showed small differences at the scale of dispersal
across DPS regions, but several larger differences at
the management-basin scale with dispersal primarily
occurring from more ‘inshore’ to more ‘offshore’ loca-
tions (top row in Fig. S4 in Supplement 1). These
results correspond with the net outward estuarine
flow of surface waters in the region. The 90 to 120 d
comparison showed fewer and smaller changes for
both species than observed across the 20 to 40 d com-
parison (bottom row in Fig. S4), suggesting that the
final extent of dispersal for both species had mostly
been realized by Day 90. Dispersal of other rockfish
species has been shown to be unrelated to PLD along
the Oregon and Washington coasts, where along-
shore currents would otherwise predict wider dis-
persal ranges and more intermixing of larvae than
ob served from microchemistry analyses (Miller &
Shanks 2004). The strong interaction between PLD
and changes in larval depth distribution could help
explain recent studies showing higher prevalence of
self-recruitment for marine fish populations than pre-
viously thought (Jones et al. 1999, Planes et al. 2009,
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Christie et al. 2010, Berumen et al. 2012, Hameed et
al. 2016, Baetscher et al. 2019), particularly when
complex oceanography is accounted for in the model
(Nickols et al. 2012).

4.3.  Are dispersal patterns consistent with 
genetic structure?

The 2 focal rockfish species were previously shown
to have different population structures: canary rock-
fish collected within the DPS were genetically similar
to canary rockfish collected outside the DPS bound-
aries, while yelloweye rockfish collected within the
DPS were genetically distinct from yelloweye rock-
fish collected outside the DPS (Siegle et al. 2013,
Andrews et al. 2018). If larval dispersal was the pri-
mary mechanism responsible for the interspecific dif-
ferences in population structure, then we would have
expected high rates of canary rockfish dispersal
across DPS boundaries, but almost no dispersal of
yelloweye rockfish larvae across DPS boundaries.
However, by Day 90 we found that both species
showed cross-boundary dispersal rates of similar
magnitude, which should allow for the necessary
gene flow to homogenize genetic variation across
regions for both species (Slatkin 1987, Palumbi 2003,
Waples & Gaggiotti 2006).

There are many possible reasons why the dispersal
patterns generated by our model are inconsistent
with the genetic structure found for yelloweye rock-
fish across the DPS regions. The simplest explanation
is that the PLD of yelloweye rockfish in this region is
shorter than the 90−120 d assumed for our model
simulations. If PLD is ~50−60 d, then our results would
be consistent with the genetic results — no dispersal
from outside the DPS into the DPS and limited dis-
persal from inside the DPS (particularly from SJI) to
locations outside the DPS (Andrews et al. 2018).
However, as discussed above, accurately modeling
the interaction between shifts in larval depth distri-
bution and PLD will be critical to estimating cross-
boundary connectivity in this system. Empirical stud-
ies to identify species-specific larval rockfish depth
distributions would help parameterize further disper-
sal modeling.

A second source of inconsistency between the lar-
val dispersal and genetics results relates to spatially
discrete survival rates of larvae and newly settled
recruits. Larvae that travel through or are entrained
in highly productive oceanographic features such as
fronts and eddies have been shown to have higher
survival than larvae that do not encounter these pro-

ductive features (Bakun 2006, Woodson et al. 2012,
Shulzitski et al. 2016). The Strait of JDF connects the
2 DPS regions and is remarkably uniform in its sea-
ward surface-layer flow and shoreward deep-layer
flow, limiting the development of these productive
features, which may reduce the growth and survival
of young larvae traveling through this basin. Simi-
larly, finding suitable habitat upon the transition
from pelagic to benthic environments will modify the
ultimate survival of larvae. Benthic habitat in the
Strait of JDF consists mostly of soft, sandy, muddy
bottom with the exception of narrow bands of shal-
low settlement habitat along the northern and south-
ern shorelines (e.g. eelgrass beds, kelp forests and
rocky reefs). Anecdotal evidence from SCUBA-based
monitoring (REEF 2019, R. Pacunski, Washington De -
partment of Fish & Wildlife, pers. comm., K. Andrews
unpubl. data), and remotely operated vehicle surveys
(Pacunski et al. 2013) suggests post-settled young-of-
year yelloweye rockfish are found in deep (>20 m),
unvegetated rocky reefs, while other rockfish spe-
cies, including canary rockfish, are commonly found
in shallow (<10 m) kelp forests and eelgrass beds.
This potential phenotype-environment mismatch
could limit the amount of suitable settlement habitat
and survival of settlers throughout the Strait of JDF,
thus altering the realized levels of connectivity across
management boundaries of yelloweye rockfish (Mar-
shall et al. 2010). Additionally, our results may differ
from in situ patterns due to site-specific differences
between losses of particles due to model boundary
conditions compared to actual rates of larval mortality
under these conditions (Fig. S5 in Supplement 1).

It is also possible that the dispersal patterns we
observed only represent the specific oceanographic
conditions in 2006 and thus do not capture interan-
nual variation in larval dispersal that may be impor-
tant over time (e.g. Watson et al. 2010). Subsequent
research across multiple years using newly devel-
oped numerical models (MacCready et al. 2021) will
provide a better sense of whether these results are
robust across years. This would be of particular inter-
est for simulated larval releases at sites near the DPS
boundary, which showed high levels of cross-bound-
ary dispersal. Our results may be conservative esti-
mates of dispersal from PSGB waters to the outer
coast, given the average to below-average fresh-
water flow of 2006 and its potential effect on disper-
sal rates of the youngest larval stages, but given the
persistent nature of the incoming deep-layer tidal
currents, interannual variability in dispersal from the
outer coast to waters inside the DPS due to oceano-
graphic conditions is likely to be minimal.
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4.4.  Application to management

Understanding the connectivity of yelloweye and
canary rockfish populations among basins and across
the DPS boundary will play a large role in determin-
ing whether conservation and management goals are
being met. Perhaps the most important finding of this
study related to population recovery goals for ESA-
listed yelloweye rockfish is the site-specific variation
in dispersal rates. There were only a few release sites
that appeared to substantially contribute larvae to
other DPS basins and are thus likely to play an out-
sized role in replenishing depleted yelloweye num-
bers in the connected basins. For example, larvae
released from the western and northern SJI sites
(Sites 7 and 9) dispersed into the SOG basin at rela-
tively high rates (~24 and 49%, respectively), while
the eastern SJI site (Site 8) was the only significant
source of dispersal into the Main Basin of Puget
Sound. Moreover, the only substantial dispersal of
larvae into Hood Canal and the South Sound came
from the central Main Basin (Sites 13 and 15, respec-
tively). The potential value of these release sites as
larval sources may be analogous to the role of a small
number of coral reefs in supplying coral larvae across
much of the Great Barrier Reef (Hock et al. 2017).

The importance of these sites to the recovery of
yelloweye rockfish abundance, however, will de -
pend heavily on where high densities of adult yel-
loweye rockfish occur. For example, if biomass is
concentrated throughout the SJI or the southern por-
tions of the SOG, then it is likely these locations
could serve as a source of larvae to increase recruit-
ment to other basins within the DPS, thus decreasing
the time necessary for recovery. However, if biomass
is concentrated in northern SOG or within Hood
Canal, then recovery across the DPS may take much
longer due to the high rates of larval retention in
these locations.

Understanding the dynamics between larval dis-
persal, adult movement among the basins, and the
location of high densities of yelloweye rockfish will
also help inform potential spatial management strate-
gies of recreational fisheries and/or other ocean-use
activities that may contribute to direct or indirect
mortality of ESA-listed rockfish species. Sites with
high adult densities that are also potential sources of
larvae for other basins could provide a framework for
identifying critical habitat for PSGB yelloweye rock-
fish, in the same way that marine protected areas
(MPAs) are designed to protect popu lation sources,
provide connectivity among pop ulations and to pro-
vide spillover of individuals to populate habitats out-

side the MPAs (Crowder et al. 2000, Burgess et al.
2014, Di Lorenzo et al. 2016).

5.  CONCLUSIONS

Larval dispersal and adult/juvenile movement are
the 2 primary mechanisms that explain both evolu-
tionary and ecological connectivity among marine
fish populations. Larval dispersal integrates a com-
plex set of oceanographic, ecological, physiological
and behavioral variables that ultimately contribute to
the genetic structure, connectivity and spatiotempo-
ral patterns of abundance that we observe in nature.
Simulating the dispersal of larvae from 2 rockfish
species of high management and conservation value
showed similar patterns of dispersal and connectivity
among geographic and management units that are
not entirely consistent with the patterns of popula-
tion structure observed in the genetic code. Further
research should explore these inconsistencies and
span a broader range of oceanographic conditions to
increase our understanding of connectivity across
management boundaries and improve the likelihood
of sustainable management of these species.
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